
lessons learned in the Tungsten Fabric infra

Jarosław Łukow and Łukasz Łukasiewicz

Zuul as a build system

About

Who we are

2

● admins of Tungsten Fabric CI/CB system

● started deploying Zuul v3 in November 2017

● we work at CodiLime

○ DevOps, SDN, NFV, Cloud-Native services

○ 200 engineers, 48 270 coffees/year*

● contacts:

○ diabelko: lukasz@codilime.com

○ jluk: jaroslaw.lukow@codilime.com

* at least the espresso machines say so

mailto:lukasz@codilime.com
mailto:jaroslaw.lukow@codilime.com

Agenda

● about

● build system

● reusing Zuul jobs

● testing jobs

● cool to see in Zuul

Intro

What is Tungsten Fabric

4

● formerly known as OpenContrail

● multicloud, multistack SDN solution

● integrates with OpenStack, Kubernetes, OpenShift, VMware

Intro

Project specifics

5

● C, Go, Python

● single build of all components (30 repos)

● Android Repo tool

● services deployed as containers

● platforms:

○ CentOS (mostly)

○ RHEL

○ Windows Server

Agenda

● about

● build system

● reusing Zuul jobs

● testing jobs

● cool to see in Zuul

Build system

The starting point - Jenkins CB system

7

● separate from CI (which was running on Zuul 2.5 at that time)

● different locations of dependencies

● different scripts

● different slave pool

● single-job pipeline

Build system

Then comes Zuul v3

8

● upgrade CI from 2.5

● accent on openness

● unify CI, build and release pipelines

Build system

The pipeline

9

● compile and package

● containerize

● publish

Build system

The pipeline

10

● compile and package

● containerize

● publish

Build system

The pipeline

11

Build system

The pipeline

12

Build system

The pipeline

13

Build system

The pipeline

14

Build system

The pipeline

15

Build system

The pipeline

16

Build system

The pipeline

17

Build system

The pipeline

18

Build system

Surroundings

19

● mirrors

○ RPMs, DEBs

○ PyPI

○ Maven

● DockerHub cache

Build system

Builder VM images

20

● minimal approach

○ OS base

○ Zuul SSH key

● all the dependencies are installed during build

● the devs were disappointed with the fact that it's not a way to cache builds

Build system

Triggering

21

● scheduled (periodic)

● on every merge

●

● on-demand

trigger:

 gerrit:

 - event: ref-updated

trigger:

 timer:

 - time: "0 7 * * *"

zuul enqueue-ref --ref refs/heads/master ...

Build system

Triggering

22

● scheduled (periodic)

● on every merge

●

● on-demand

trigger:

 gerrit:

 - event: ref-updated

trigger:

 timer:

 - time: "0 7 * * *"

zuul enqueue-ref --ref refs/heads/master ...

 daily builds

docs, third party packages

retrying builds

Build system

Our extensions

23

● consecutive build numbers

● dumping exact commit information

● dumping information about artifacts

● generating lists of changes included in builds (changelog)

Build system

Our extensions

24

● consecutive build numbers

SQL DB

buildset id master

buildset id R5.0

420

138

custom Ansible module

dumping exact commit information

Our extensions

26

{"review.opencontrail.org/Juniper/contrail-controller": {
 "revisions": {
 "current": "f5d22c6",
 "previous": "42c7316"
 }
 "changes": [{
 "title": "Replicate BGP EVPN Type-1 Routes...",
 "timestamp": 1542144758,
 "author": {...},
 "bugs": [],
 "sha": "7d24140f16b6d066f9802e0547b41deb2a846893",
 "message": "...",
 "change": {
 "number": 47647,
 "id": "I4387030ca62495afe949f78b5fc391049f4783d5"
 }
 },
...

Build system

Our extensions

27

● dumping exact commit information

Build system

Build pipeline meets ‘check’

28

● uses the same jobs as periodic pipeline

● sanity jobs use containers built in previous jobs

● publishing artifacts at the end is not needed

Build system

Build pipeline meets ‘check’

29

Build system

Build pipeline meets ‘check’

30

Build system

Build pipeline meets ‘check’

31

Build system

Build pipeline meets ‘check’

32

Build system

Build pipeline meets ‘check’

33

Build system

Build pipeline meets ‘check’

34

Agenda

● about

● build system

● reusing Zuul playbooks

● testing jobs

● cool to see in Zuul

Reusing Zuul playbooks

Original idea

36

● jobs are already shared by the CI and Build jobs

● perhaps they can also be used in developer environment

● so… let’s create Zuul-agnostic playbooks and roles

Reusing Zuul playbooks

Why

37

● so developers can reproduce the CI environment with ‘one-click’

● to save us some time

● because it’s cool to reuse stuff

Reusing Zuul playbooks

The Zuul job dilemma

38

● reusable playbooks vs. convenient usage of variables

● good ARA visibility vs. single "shell" entrypoint

Reusing Zuul playbooks

Why it failed

39

● run playbook has to do all the work

● can’t leverage pre- and post- playbooks

● too hard to draw a strict line between Ansible and Zuul

● too hard to mock Zuul outside of Zuul (you don't want to parse config on your own)

Reusing Zuul playbooks

Aftermath

40

● packaging/building logic inside the code, instead of the CI

● simple Makefiles

● still visible in ARA

Reusing Zuul playbooks

Aftermath

41

CB

run playbook

pre- playbooks

make target-list
make $target

post- playbooks
(logs, pkg upload)

dev environment

make all

Agenda

● about

● build system

● reusing Zuul jobs

● testing jobs

● cool to see in Zuul

Testing jobs

CI of CI

43

● your CI jobs are stored in a repo as code, so…

● you should test them like everything else

● but, some things are not testable in Zuul (for a good reason)

● you can take the risk or...

Testing jobs

Ideas for testing jobs

44

● setting all pipelines as post-review (‘disable security’)

● separate development environment (Zuul, Gerrit, Nodepool)

● Zuul on a laptop

● unit testing roles

● running copies/mocks of jobs

Testing jobs

Mocking your jobs

45

● review to an untrusted repo

● secrets as variables (dummy values)

● changing Ansible host

Agenda

● about

● build system

● reusing Zuul jobs

● testing jobs

● cool to see in Zuul

Cool to see in Zuul

Matching executor with its cloud

47

Cool to see in Zuul

Matching executor with its cloud

48

Cool to see in Zuul

Matrix build definitions

49

- job:
 name: contrail-build-containers-centos7-newton
 parent: contrail-build-containers-base
 vars:
 openstack_version: newton

- job:
 name: contrail-build-containers-centos7-ocata
 parent: contrail-build-containers-base
 vars:
 openstack_version: ocata

- job:
 name: contrail-build-containers-centos7-queens
 parent: contrail-build-containers-base
 vars:
 openstack_version: queens

- project:
 name: Juniper/contrail-analytics
 check:
 jobs:
 - contrail-build-containers-centos7-newton
 - contrail-build-containers-centos7-ocata
 - contrail-build-containers-centos7-queens

- job:
 name: contrail-build-containers-centos7-{openstack_version}
 parent: contrail-build-containers-base

- project:
 name: Juniper/contrail-analytics
 check:
 jobs:
 - contrail-build-containers-centos7-{openstack_version}:
 vars:
 openstack_version: newton
 - contrail-build-containers-centos7-{openstack_version}:
 vars:
 openstack_version: ocata
 - contrail-build-containers-centos7-{openstack_version}:
 vars:
 openstack_version: queens

Wrapping up

Zuul as a build system

Takeaways

51

● Tungsten Fabric has a cool CI/CB system

● how to handle build artifacts with Zuul

● reusing your jobs is the key

● you can test your jobs not-in-the-production

Zuul as a build system

Future plans

52

● continuous upgrade of Zuul

● running build and unittest jobs inside containers instead of VMs

● supercedent pipeline manager

Thank you

