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Zuul as a build system



About

Who we are
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● admins of Tungsten Fabric CI/CB system

● started deploying Zuul v3 in November 2017

● we work at CodiLime

○ DevOps, SDN, NFV, Cloud-Native services

○ 200 engineers, 48 270 coffees/year*

● contacts:

○ diabelko: lukasz@codilime.com

○ jluk: jaroslaw.lukow@codilime.com

* at least the espresso machines say so

mailto:lukasz@codilime.com
mailto:jaroslaw.lukow@codilime.com
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Intro

What is Tungsten Fabric
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● formerly known as OpenContrail

● multicloud, multistack SDN solution

● integrates with OpenStack, Kubernetes, OpenShift, VMware



Intro

Project specifics
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● C, Go, Python

● single build of all components (30 repos)

● Android Repo tool

● services deployed as containers

● platforms:

○ CentOS (mostly)

○ RHEL

○ Windows Server
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Build system

The starting point - Jenkins CB system
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● separate from CI (which was running on Zuul 2.5 at that time)

● different locations of dependencies 

● different scripts

● different slave pool

● single-job pipeline



Build system

Then comes Zuul v3
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● upgrade CI from 2.5

● accent on openness

● unify CI, build and release pipelines



Build system

The pipeline
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● compile and package

● containerize

● publish
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Build system

Surroundings
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● mirrors

○ RPMs, DEBs

○ PyPI

○ Maven

● DockerHub cache



Build system

Builder VM images
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● minimal approach

○ OS base

○ Zuul SSH key

● all the dependencies are installed during build

● the devs were disappointed with the fact that it's not a way to cache builds



Build system

Triggering
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● scheduled (periodic)

● on every merge

●

● on-demand

trigger:

  gerrit:

    - event: ref-updated

trigger:

  timer:

    - time: "0 7 * * *"

zuul enqueue-ref --ref refs/heads/master ...



Build system

Triggering
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● scheduled (periodic)

● on every merge

●

● on-demand

trigger:

  gerrit:

    - event: ref-updated

trigger:

  timer:

    - time: "0 7 * * *"

zuul enqueue-ref --ref refs/heads/master ...

 daily builds

docs, third party packages 

retrying builds



Build system

Our extensions
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● consecutive build numbers

● dumping exact commit information

● dumping information about artifacts

● generating lists of changes included in builds (changelog)



Build system

Our extensions
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● consecutive build numbers

SQL DB

buildset id master

buildset id R5.0

420

138

custom Ansible module





dumping exact commit information

Our extensions
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{"review.opencontrail.org/Juniper/contrail-controller": {
        "revisions": {
            "current": "f5d22c6", 
            "previous": "42c7316"
        } 
        "changes": [{
                "title": "Replicate BGP EVPN Type-1 Routes...", 
                "timestamp": 1542144758, 
                "author": {...}, 
                "bugs": [], 
                "sha": "7d24140f16b6d066f9802e0547b41deb2a846893", 
                "message": "...", 
                "change": {
                    "number": 47647, 
                    "id": "I4387030ca62495afe949f78b5fc391049f4783d5"
                }
            },
...



Build system

Our extensions
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● dumping exact commit information



Build system

Build pipeline meets ‘check’
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● uses the same jobs as periodic pipeline

● sanity jobs use containers built in previous jobs

● publishing artifacts at the end is not needed
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Build pipeline meets ‘check’
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Reusing Zuul playbooks

Original idea
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● jobs are already shared by the CI and Build jobs

● perhaps they can also be used in developer environment

● so… let’s create Zuul-agnostic playbooks and roles



Reusing Zuul playbooks

Why
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● so developers can reproduce the CI environment with ‘one-click’

● to save us some time

● because it’s cool to reuse stuff



Reusing Zuul playbooks

The Zuul job dilemma
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● reusable playbooks vs. convenient usage of variables

● good ARA visibility vs. single "shell" entrypoint



Reusing Zuul playbooks

Why it failed
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● run playbook has to do all the work

● can’t leverage pre- and post- playbooks

● too hard to draw a strict line between Ansible and Zuul

● too hard to mock Zuul outside of Zuul (you don't want to parse config on your own)



Reusing Zuul playbooks

Aftermath
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● packaging/building logic inside the code, instead of the CI

● simple Makefiles

● still visible in ARA



Reusing Zuul playbooks

Aftermath

41

CB

run playbook

pre- playbooks

make target-list
make $target

post- playbooks
(logs, pkg upload)

dev environment

make all
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Testing jobs

CI of CI
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● your CI jobs are stored in a repo as code, so…

● you should test them like everything else

● but, some things are not testable in Zuul (for a good reason)

● you can take the risk or...



Testing jobs

Ideas for testing jobs
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● setting all pipelines as post-review (‘disable security’)

● separate development environment (Zuul, Gerrit, Nodepool)

● Zuul on a laptop

● unit testing roles 

● running copies/mocks of jobs



Testing jobs

Mocking your jobs
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● review to an untrusted repo

● secrets as variables (dummy values)

● changing Ansible host
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Cool to see in Zuul

Matching executor with its cloud
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Cool to see in Zuul

Matrix build definitions
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- job:
    name: contrail-build-containers-centos7-newton
    parent: contrail-build-containers-base
    vars:
      openstack_version: newton

- job:
    name: contrail-build-containers-centos7-ocata
    parent: contrail-build-containers-base
    vars:
      openstack_version: ocata

- job:
    name: contrail-build-containers-centos7-queens
    parent: contrail-build-containers-base
    vars:
      openstack_version: queens

- project:
    name: Juniper/contrail-analytics
    check:
      jobs:
        - contrail-build-containers-centos7-newton
        - contrail-build-containers-centos7-ocata
        - contrail-build-containers-centos7-queens

- job:
    name: contrail-build-containers-centos7-{openstack_version}
    parent: contrail-build-containers-base
    
- project:
    name: Juniper/contrail-analytics
    check:
      jobs:
        - contrail-build-containers-centos7-{openstack_version}:
            vars:
              openstack_version: newton
        - contrail-build-containers-centos7-{openstack_version}:
            vars:
              openstack_version: ocata
        - contrail-build-containers-centos7-{openstack_version}:
            vars:
               openstack_version: queens



Wrapping up



Zuul as a build system

Takeaways
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● Tungsten Fabric has a cool CI/CB system

● how to handle build artifacts with Zuul

● reusing your jobs is the key

● you can test your jobs not-in-the-production



Zuul as a build system

Future plans
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● continuous upgrade of Zuul

● running build and unittest jobs inside containers instead of VMs

● supercedent pipeline manager



Thank you


