
[Template] Release Scope Overview
****Draft

Planned deadlines
Planned scope

Requirements

Planned deadlines

Milestone Planned
deadline

Actual
deadline

Description of the Milestone Comments

M0 date as
initially
planned

date as
really
committed

Blueprint proposal represented as a Jira EPIC ticket
Feature lead assigned to Jira Epic ticket - declaration of participation in the
simultaneous release
The initial version of stored on github/tf-spec/Release folder,Increment Blueprint
The blueprint presented, discussed and approved by related committers
Release Scope Overview updated accordingly
The initial version of the Release Plan for the project presented
Dependencies between projects/components/areas identified

problems, decisions,
reasons for the delay, etc

M1
All dependencies between existing functionality and requested change/feature
discussed and agreed by PTL and related approvers (based on Modules/Commiters)
Jira Epic ticket broken down into stories in related Jira project (backlog, plan) -
presented and discussed on TWS meeting
The final version of Blueprints, Release Scope and Release Plans for participating
projects discussed and approved by approvers

M2
Technical design fully provided, agreed (documentation on the Confluence/github/tf-
spec available)
Jira Epic ticket updated with link to technical design
Documentation started
Feature tests started
Feature/Functionality Freeze - Technical Design approved by relevant approvers
(Modules/Commiters)

M3
External API available for beta-tests
Jira Epic ticket updated with information about API availability (documentation link - tf
repo)
Documentation in progress
Tests in progress
API Freeze confirmed by Feature Lead (comment on Jira Epic ticket with repo
/commit ID link)

M4
all functionality and APIs available for testing
Jira Epic ticket updated with information about final API documentation, executed UI
tests documentation
Documentation provided - confirmed by Documentation project PTL
Code freeze confirmed by Feature Lead (comment on Jira Epic ticket) - only bug
fixing allowed

RC0
Release candidates agreed, approved, tested
System tests conducted, quality confirmed by CI/CD PTL (should we have some
QA? Security?)
Final documentation provided, reviewed, approved by Documentation PTL
Marketing information provided to Marketing Advisory Council - confirmed by Brandon

?Wick
release branch cut off - branch stabilization from now on
Release Candidates freeze, confirmed by PTL and TSC(?)

Deployment official deployment executed

Planned scope

https://wiki.tungsten.io/display/TUN/%5BTEMPLATE%5D+Feature+blueprint
https://wiki.tungsten.io/display/TUN/%5BTEMPLATE%5D+Feature+blueprint
https://wiki.tungsten.io/display/TUN/Modules+and+Components
https://wiki.tungsten.io/display/~Bwick
https://wiki.tungsten.io/display/~Bwick

1.
a.

2.
a.

3.
a.
b.

4.

a.
b.

5.
a.

i.
b.

i.
c.

i.
6.

a.

Project Scope Dependencies

Project Name
(link)

Overall description of the project's increment in the particular
release Dependent on: projects, on which this increment relay

on
Affect: projects which depend on this increment

Requirements

Releases have a web/wiki page that explains exactly what is in the release MUST
The page be automatically generated if at all possible SHOULD

Releases be in the form of docker images stored in DockerHub MUST
Releases be architected as microservices and be Kubernetes compatible MUST

Releases have a regular cadence MUST
Ideally releases happen every month WOULD
The minimum cadence velocity be 3 months, not 6 months MUST

Releases have some form of labels, tags, or branching scheme that allows for mapping included features and bug fixes into a MUST
CHANGELOG and RELEASE NOTES

See #1 above
The scheme be documented here in the Wiki MUST

There be a variety of release types for various purposes to be determined; a starting point might be: MUST
Experimental releases for nightly or high interval testing looking for build breakages

Lightly tested builds
Stable regular builds for doing downstream integration testing into commercial distributions

Standard testing
Production builds that can be used for official releases

Extensive scalability and performance testing (as possible)
SHOULD develop a scheme for LTS builds based on production builds (above)

QUESTION: what does an LTS build mean for an open source project that has no official support?

	[Template] Release Scope Overview

